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Physical model of anode glow patterns in elevated-pressure gas discharges

R. Sh. Islamov
Institute of Laser and Information Technologies, RAS, 140700 Shatura, Moscow Region, Russia

~Received 30 April 2001; published 25 September 2001!

A physical self-consistent model is developed to explain single spots or complex current structures at the
anode of elevated-pressure parallel-plate dc discharges. The model is based on a fluid description of electron
and ion transport coupled with Poisson’s equation and involves a pair of coupled reaction-diffusion equations
of an activator-inhibitor-type. This system of one-dimensional equations containing no phenomenological
~adjustable! parameters allows one to find the current-density~activator! and anode potential drop~inhibitor!
distributions on the anode surface. In a certain range of supply voltage, an anode glow stratification, resulting
in the formation of separate glowing regions, takes place. However, the growth of perturbations and formation
of a spatially periodic current pattern are complicated by competition between the current stripes, leading to
suppressing of the neighboring current stripes. The bifurcation behavior of the model with respect to the
characteristic electron energy, recombination coefficient, and discharge gap has been analyzed. The properties
of a single anode current structure, including the normal current density effect, have been investigated. The
application of these results to available findings in experiments and two-dimensional numerical simulations is
discussed.

DOI: 10.1103/PhysRevE.64.046405 PACS number~s!: 52.80.Hc, 47.54.1r, 42.60.Lh
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I. INTRODUCTION

The investigation of discharge stability and conditions
homogeneous discharge burning is of practical significa
in a number of applications. It is known@1# that an elevated-
pressure self-sustained glow discharge far from the wall
chamber is unstable with respect to constriction to the c
umn at high current density. The anode spots are usu
circular. The laminar gas flow transverse to the current
stroys the column and the anode spots are converted in
number of stripes along the gas flow@1–4#. In the absence o
gas flows stripe patterns in current distributions are obser
in silent gas discharges@5# and dc discharge systems with
high-resistance semiconductor cathode@6#. The most cred-
ible cause of the plasma inhomogeneity formation near e
trode is the negativity of a volt-ampere characteristic of
electrode layer@7#, which is in conformity with the contrac
tion dynamic and the weak sensitivity of instability evolutio
to discharge conditions and gas composition. Numeric
within the frame of pure electrodynamic phenomena,
possibility of an instability growth in electrode regions h
been shown in@8#. The spontaneous stratification of the glo
in elevated-pressure gases has been demonstrated by nu
cal simulations in near-anode plasmas@4#, dielectric barrier
discharges@9#, and discharges with metallic electrod
@10,11#. However, as in the case of physical experiments,
results of numerical experiments need clarification. T
similarity in the patterns these very different discharge s
tems display, suggests that the patterns should be un
standable in term of simplified models that do not include
of details of the fundamental dynamical equations.

Most of the theoretical investigations of the current p
terns~for instance,@12–15#! are based on strongly phenom
enological equations for the current-density distributi
across the electrode surface. A second description of the
rent pattern formation has been developed on phys
grounds for small deviations from a lateral-homogene
1063-651X/2001/64~4!/046405~13!/$20.00 64 0464
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state by using the experimentally or numerically defin
current-voltage characteristic@16,17#. These approaches re
sult in interesting static and dynamic patterns and were a
to reproduce many patterns and scenarios observed ex
mentally in the laterally extended dc and ac discharge s
tems. Several phenomenological aspects of uniform glo
and spots are, however, still uncertain, as are many detai
their theory.

The main purpose of the present work is to obtain a s
plified physically self-consistent model of the anode glo
stratification in elevated-pressure parallel-plate dc d
charges. Our principal assumption is that the asymptotic
equivalent equations for the current-density and anode po
tial drop distributions on the anode surface are deriva
from a basic~three-dimensional! fluid description of electron
and ion transport coupled with Poisson’s equation. In t
paper we present a detailed investigation of this model,
show that it provides most of the basic features of a curr
pattern formation of the basic model.

The paper is comprised of six sections. In Sec. II a tw
component reaction-diffusion system of activator-inhibito
type is derived from a basic fluid description of charge tra
port in the discharge volume including both near-anode la
and positive column. Section III contains results from bifu
cation analysis concerning the formation of spatially perio
stripe patterns. Section IV explores, analytically and num
cally, the possible scenarios of instability evolution to t
regular or irregular localized particlelike structures~stripes!
of the near-anode plasmas. The properties of a single s
and the normal current-density effect are discussed in Sec
Finally, in Sec. VI some conclusions are drawn.

II. BASIC EQUATIONS

The simplest set of equations containing the basic phy
necessary for formation of constricted discharge structu
are the well-known continuity equations in the drift-diffusio
©2001 The American Physical Society05-1
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approximation for electrons and positive-ions coupled w
Poisson’s equation for the electric field, along with vario
constituent relations involving the discharge plasma coe
cients

]nj

]t
1“•Gj5Sj ,

Gj52D j“nj2
qj

uqj u
m jnj“w, ~1!

¹2w52
1

«0
(

j
qjnj , ~2!

J5(
j

qjGj ,

wherenj is the particle density (j 5e or i for electrons and
positive ions, respectively!, m j , D j , andqj are their mobil-
ity, diffusivity, and charge,w is the electric potential,J is the
current density, and«0 is the permittivity of free space. In
the case being considered,Se5Si5ne(a2bni), wherea is
the frequency of direct ionization andb is the electron-ion
recombination coefficient. The gas is assumed to be elec
positive.

In most cases, the contraction of self-sustained quas
tionary glow discharges at elevated-pressure gases is
ceded by the formation of anode spots@1#. It seems reason
able to say that in many cases the formation of an
structures is relatively independent of the near-cathode
cesses@18#. That is why here the discharge region und
study was chosen to be between the anode and the he
the positive column~see Fig. 1!. Excluding the cathode re
gion from consideration makes it possible to obtain a sim
fied physical self-consistent model of anode glow stratifi
tion and examine an array of problems that are not dire
related to the conditions near the cathode, but are impor
in a number of technical applications characterized by
elongated, volumetrically uniform, positive column~such as

FIG. 1. Schematic diagram of the glow discharge used in
study. The gap between the anode and the positive column
defines the model region.
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in gas-discharge chambers with a thoroughly segmen
cathode and a flat, solid anode@1#!. That makes it possible to
also avoid a number of difficulties related to the applicabil
of basic model~1! and~2! for describing regions of cathod
drop, negative glow, and Faraday dark space.

The following boundary conditions have been taken:w
5V (V5const.0), Gi•n50, Ge•n5sene for the anode;
w50, ]ni /]n50, @Ge1(me /m i)Gi #•n50 for the positive
column head;]ne /]n5]ni /]n5]w/]n50 for the lateral
surfaces. In these cases,n is a unit vector with the externa
normal for the discussed surfaces,se is the coefficient re-
sponsible for the electron flux interaction with the ano
surface. The boundary condition for the electron flux in t
positive column head is retained a typical form for the ca
ode ~with the effective secondary emission coefficientg
5me /m i), but it fulfills requirement of the quasineutralit
ne5ni when ]ne /]n50. The boundary conditions on th
lateral surfaces (x50 andx5L) maintain the conditions for
the electron and ion impermeability. Thus the calculation
gion may be interpreted as a periodic pattern cell.

Anode and cathode spots have a complex, poorly un
stood morphology, even for the simple plane-parallel d
charge geometry. Due to the severe nonlinearity and str
coupling of equations~1! and ~2!, the treatment of these
equations is a difficult problem. We therefore restrict o
selves to a limited set of conditions, ignoring gas heati
plasma chemistry, and nonlinear surface effects. Howe
these factors can become more important as the curren
creases.

The local field approximation is used to obtain the ioniz
tion rate. It is assumed that the ionization rate depends on
local coordinates only through the normalized local elec
field E/p, whereE5u“wu is the magnitude of the field andp
is the gas pressure. The ionization term is a very strong fu
tion of the value ofE/p, and this has played a dominant ro
in the case under consideration. To simplify the calculat
and analysis, the electron and ion mobilities and diffus
coefficients are assumed to be field independent and the
De /me for electrons is chosen as a parameter~effectively the
electron temperature!.

The system of equations~1! and ~2! can be rewritten as

¹2w52gr, ~3!

]r/]t1“•G50,

G5~De2Di !“ne2Di“r2~me1m i !ne“w2m ir“w,
~4!

]

]t
~ne1ur!2Ds¹

2ne2uDi“
2r2um i“•~r“w!

5ne@a2b~ne1r!#, ~5!

J5eG,

where g[e/«0 , r[ni2ne is the charge density~in un-
signed electronic charge unite), u[me /(me1m i), and Ds
[(meDi1m iDe)/(me1m i) is the ambipolar diffusion coef-
ficient. Equation~4! is the charge conservation equatio

is
ad
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Equation~5! is the sum of Eq.~1! for the electrons and the
positive ions multiplied by factorsum i /me and u, respec-
tively.

Integrating Eqs.~3!–~5! over the longitudinal coordinate
z, we obtain equations for the averaged electron densitN
[(1/H)*0

Hne dz and the anode potential dropU[*0
H(Ez

2Ep)dz. Hereafter, we will use the subscriptz to denote the
longitudinal component of a variable anda its value on the
anode (z50), andp its value at the positive column hea
(z5H). Note thatr→0 andEz2Ep→0 asymptotically as
z→H @19#.

Multiplying Eq. ~4! by a factorz and integrating overz
between anode (z50) and positive column head (z5H), we
obtain

]

]tE0

H

rzdz1“'•E
0

H

zG'dz1E
0

H

z
]Gz

]z
dz50, ~6!

where the subscript' denotes the transverse component
variable or operator.

The first integral in Eq.~6! is given by

E
0

H

rzdz52
1

gE0

H

~wzz9 1¹'
2 w!zdz

52
U

g
1

H2

6g
¹'

2 @~12XE
2 !U#, ~7!

where XE
m[(11m)*0

H(Ez2Ep)(z/H)mdz/*0
H(Ez2Ep)dz

~with m52 in this case! is the appropriate dimensionles
thickness of anode sheath.

Note also that

U5~Es2Ep!H, ~8!

whereEs[V/H is the average electric field.
The next term in Eq.~6! is defined by

“'•E
0

H

zG'dz5¹'
2 E

0

H

@~De2Di !ne2Dir#zdz

2“'•E
0

H

@~me1m i !ne1m ir#“'wzdz

.
H2

2
~De2Di !¹'

2 N1
Di

g
¹'

2 @~12XE
2 !U#

1
H2

6
~me1m i !¹'•$N¹'@~12XE

2 !U#%

2
m i

4g
¹'

2 @~12XE!U2#,

whereXE[XE
m with m51.

The last term in Eq.~6! is given by

E
0

H

z
]Gz

]z
dz5~Gp2Ḡ !H,
04640
f

where the averaging overz is denoted by the vinculum.
Thus we have the equation for the anode potential droU

]U

]t
2

H2

6

]

]t
¹'

2 @~12XE
2 !U#

.
gH2

2
~De2Di !¹'

2 N

1
gH2

6
~me1m i !“'•$N¹'@~12XE

2 !U#%

1Di¹'
2 U2

m i

4
¹'

2 @~12XE!U2#2 f U , ~9!

where f U[gH(Ḡ2Gp) and Ḡ[(1/H)*0
HGzdz.

Further averaging Eq.~5! over z, we get

]

]t
~N1ur!2Ds¹'

2 N2uDi¹'
2 r2um i“'•~r“'w!

2
1

H S Ds

]ne

]z
1uDi

]r

]z
2um irEzD U

0

H

5ne@a2b~ne1r!#.

The ionization term is a very strong function of the val
of E/p. Hence, assuming that (Ea /Ep)neua.neup.N, the
term on the right side of the equation can be written as

ne@a2b~ne1r!#.N
Ep

Ea
a2ap1N~ap2bN!2bNr̄.

Taking into account the boundary conditions and the e
mation 2g“'•(r“'w).¹'

2 Ez
2 we have

]

]t
~N1ur!.Ds¹'

2 N1uDi¹'
2 r1

um i

2g
¹'

2 Ez
22 f N ,

~10!

where f N[N„(um i /H)Ep2(Ep /Ea)a2ap2ap1bN

1br̄…. BecauseJ̄/N.e(me1m i)Es5const, this equation
governs in essence the current-density distribution on
anode surface. Previously Eq.~10! was successfully em
ployed to describe the peripheral part of the current str
tures@4#.

The terma2ap can be approximated by the product
the average value ofa2ap and the ratio of average anod
sheath thicknessX to H. These average values we will ca
culate with the weight functionh(z)5r(z)/*0

Hr(z)dz. In
that event the thicknessX is defined as the characterist
quasineutrality breakdown dimension in the near-anode
gion Xr5izir[*0

Hzrdz/*0
Hrdz. Therefore,

a2ap5
lr

H
uua2apuur uuzuur52

lrXr

gH2r̄
E

Ep

Ea
~a2ap!dE,

wherelr is an unknown parameter of the order of unity.
The average charge in the near-anode plasma is equa
5-3
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r52
1

gHE
0

H

~wzz9 1¹'
2 w!dz

52
1

gH
~Ea2Ep!1

1

2g
¹'

2 @~12XE!U#.

As a rule the anode sheath thickness is considerably
than the discharge gap~i.e., Xr /H, XE,XE

2!1) andr!N,
hence Eqs.~9! and ~10! may be simplified to

]N

]t
.Ds¹'

2 N1
um i

2gH
¹'

2 @~Ea2Es!U#2
bN

2g
¹'

2 U2 f N ,

~11!

]U

]t
2

H2

6

]

]t
¹'

2 U.
gH2

2
~De2Di !¹'

2 N1
gH2

6

3¹'H F 6Di

gH2
1~me1m i !NG“'UJ 2 f U , ~12!

where f N5N@(um i /H)Ep1(lrXrEp /gH2r̄Ea)*Ep

Ea(a

2ap)dE2ap1bN#. If we replace the average value ofG
by its half-sum at the anode and positive column head@i.e.,

Ḡ.(Ga1Gp)/2], we obtain f U.(gH/2)(Ga2Gp). The
small value 6Di /(gH2) provides a strongly parabolic cond
tion for Eq. ~12! asN→0.

In order to get a completed self-consistent model we
asymptotic results@19# for Ga andEa . The presence of the
small parameter«5Xu /H, with Xu5De /(meEa) being the
relaxation length of the spatial disturbance scale due to
fusion electron leakage to the anode, makes it possible to
an asymptotic method for constructing an approximate s
tion of the problem for the laterally homogeneous state. T
use of these asymptotic results is generally based on the
sumption that the longitudinal distributions of the electric
field and electron and ion densities are scarcely affected
transverse charge fluxes if the current densityJ is fixed for
the positionx under consideration. The fact, that the thic
ness of near-anode layer is usually much less than the tr
verse dimensions of current structures, supports the vali
of this assumption. According to Eqs.~3.7! and~3.9! in Ref.
@19# ~for comparison see also Eqs.~34! and ~37! in @20# for
electronegative gases! the leading~nonperturbed! terms for
Ga andEa may be determined by using

Ga5
2me

gcm i
E

Ep

Ea
~a2ap!dE, ~13!

U5x
Ea

Ep

~Ea2Ep!2

gN
, ~14!

wherex[11a112a21•••, (1, a1 , a2 , . . . designate the
coefficients of asymptotic expansion of an integral in a se
with the small parameter d512Ep /Ea), c
[2(me

2/m i
2)@m i /me2 ln(11mi /me)# (c.1 for m i /me!1).

Using Eq.~13!, we get
04640
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f U5
Hme

cm i
E

Ep

Ea
~a2ap!dE2

gHme

2
NEp . ~15!

It now follows that

f N52
2um i

gH2me

f U1
P

gHE
Ep

Ea
~a2ap!dE2N~ap2bN!,

whereP[2u/c1lrXrEpN/H r̄Ea . It is clear that the val-
uesN and Ep for lateral-homogeneous states of the mod
under study and for the asymptotic model@19# are necessar
ily identical. Therefore, P50 @this means that lr

.2u/(xc)], so that

f N52
2um i

gH2me

f U2N~ap2bN!. ~16!

The system of reaction-diffusion equations~11! and ~12!
with Neuman ~no-flux! boundary conditions, where th
source termsf U and f N are given by Eqs.~15! and~16! and
the coefficientsEa and Ep are defined from Eqs.~8! and
~14!, respectively, constitute the full set of equations of t
model.

The above results, obtained by means of the asympt
expansion in terms of the small parameters, relate to the
in which a thin boundary layer develops because of the e
tron diffusion, but the profile of plasma parameters inside
relatively thicker anode sheath is basically determined by
breakdown of quasineutrality. From the comparison betw
Xu andXr.U/(Ea2Ep) we find that this corresponds to th
condition

De

me
S 12

Ep

Ea
D!U. ~17!

Condition ~17! can be rewritten as

G!
2me

2

gDe
Ea

2~Ea2Ep!. ~18!

Another limitation arises because of the conditionXE
!1 used for Eq.~12! that can be written as

G@
16me

gH
Ea~Es2Ep!. ~19!

In accordance with the most commonly encountered
proximations, the dependence ofa on the electric fieldE can
be represented in the form

a5A~E/B!r exp~2B/E!, ~20!

whereA/p, B/p, andr are constants for a given gas,p is gas
pressure. If so, changing to dimensionless independent v
ables according to

n5
gm i

2A
N, u5

U

HB
, F5

E

B
, t̃ 5At, ~21!
5-4
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PHYSICAL MODEL OF ANODE GLOW PATTERNS IN . . . PHYSICAL REVIEW E64 046405
x̃5A A

Ds
x, S i.e.,¹'[

]

] x̃
and l 5A A

Ds
L D ,

and defining

ã5
a

A
, b̃5

2b

gm i
, j5

m i

me
,

q5
Di

De
, h5

HA

2Bm i
, w5AH2A

3Ds
, ~22!

we obtain the final system of equations

]n

] t̃
.¹'

2 n1
1

2h
f u2 f n , f n52n~ ãp2b̃n!; ~23!

j
]u

] t̃
.“'•@~q1w2n!“'u#2 f u ,

f u5E
Fp

Fa
~ ã2ãp!dF2nFp ; ~24!

]n

] x̃
U

x̃50,l
5

]u

] x̃
U

x̃50,l

50 ~25!

with

Fa.Fp1Ahnu ~26!

and

Fp5Fs2u. ~27!

In this final system we use the simplified solution~26! for
Eq. ~14! and drop terms with little importance at condition
of interest to us.

The integral in Eq.~24! is expressed by the equation

E
Fp

Fa
~ ã2ãp!dF5GS 212r ,

1

Fa
D2GS 212r ,

1

Fp
D

2ãp~Fa2Fp!, ~28!

whereG(a,y)[*y
`e2tta21dt is the complementary incom

plete gamma function. For the case of large values ofy11
2a considered the expansion@21#

G~a,y!5
e2yya

y112a (
k50

`
gk~y!

~y112a!2k
,

gk11~y!5~12a22ky!gk~y!1y~y112a!
]

]y
gk~y!,

g051

may be used. Retaining in Eq.~28! only the principal term of
the asymptotic expansion, with good accuracy we have
04640
E
Fp

Fa
~ ã2ãp!dF.

ãaFa

21r 11/Fa
2

ãpFp

21r 11/Fp

2ãp~Fa2Fp!. ~29!

If both bp5const andHp5const, the dimensionles
variables and all parameters of model~23!–~25! arep inde-
pendent and the present model obeys similarity laws
physical space with invariantstp, xp, U, E/p, andJ/p2.

III. LINEAR STABILITY ANALYSES

Under discharge voltage control, i.e., fixed control para
eterFs , the model described by Eqs.~23!–~25! has at least a
trivial equilibrium staten50 ~no current flows!. In addition,
saddle-node bifurcation occurs atFs5F* and a pair of the
homogeneous fixed points (n1 ,U1) and (n2 ,U2) arises as
Fs.F* @see Fig. 2~a!#. We will use the parameterFs as the
bifurcation parameter. In terms of the basic model the qu
tities n and Fs correspond to the current density and d
charge voltage, respectively, which are physical quantitie
interest. Thus Fig. 2~a! shows the normalized static curren
voltage characteristic. The model predicts the negative sl
of the curveu(n) in accordance with experiment@22# in air
and N2 and only a slight fall inu with a rise in the electron-
ion recombination coefficientb ~Fig. 3!. Since]n/]Fs5`
asFs5F* , it follows thatF* is given by the equation

V50,

where

V[
] f n

]n

] f u

]u
2

] f u

]n

] f n

]u
. ~30!

The root of this equation can be obtained iteratively

F* .g1
g2

124g
1

2g3

124g
Ah

b̃
expS 2

1

2gD ,

whereg is the solution of the equation

b̃G2 expS 2
1

GD5g expS 2
1

gD
with

G~g![g1A h

~124g!b̃
g expS 2

1

2gD .

Then the bifurcation point (n* ,u* ) is defined as

@exp(21/g)/b̃,F* 2g#.
First we study the trivial equilibrium state (n,u)5(0,0).

To perform a stability analysis, we linearize the dynam
system ~23! and ~24! around this spatially homogeneou
fixed point for small space- and time-dependent fluctuati
(dn,du)5@ ñ exp(iq̃x̃),ũexp(iq̃x̃)#, and obtain the set of equa
tions
5-5
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]ñ

] t̃
5ñ~a1gñ1dũ1Q!, ~31!

]ũ

] t̃
5ñ~c1bũ1R!1dũ ~32!

with

a5as2
Fs

2h
2q̃2, g52b̃, d52

1

2h
1

3as

4Fs
2

,

c5
Fs

j
, d[2

q

j
q̃2, b5

1

j
1

has

2jFs
2

,

FIG. 2. ~a! Bifurcation diagram in the plane (n,Fs) for model
~23! and ~24!. Curvesa andb showFs dependence ofn for trivial
and bifurcation solutions, respectively. Solid, dashed, and do
lines indicate stable, absolute unstable, and Turing unstable equ
rium states, respectively. The instability region of the trivial so
tion ~i.e., Fs.F050.093 14) lies exterior to the plot. PointsA and
C mark the saddle-node bifurcation and the critical point of
Turing instability, respectively. Point3 is referred to in Fig. 5.
Curve c showsFs dependence ofn0 for solution in the form of a
single localized stationary stripe, wheren05n at the middle of this
stripe. ~b! Fs-dependence of the dimensionless transverse sizD

5*ndx̃/n0 of this stripe. Parameters of the model areh52142.9,

b̃50.002526,w52128.3,j50.003 889, andq50.000 100 6.
04640
where Q and R are free from terms of degree below tw
as[ã(Fs)5Fs

r exp(21/Fs).
The linear part of Eqs.~31! and ~32! yields the eigenval-

ues

l15a, l25d.

Modes with l.0 are unstable. Sinced<0, the instability
condition isa.0. The Neumann boundary conditions~25!

allow only cosine modes cos(q̃x̃), whereq̃5kp/ l with inte-
ger k. The asymptotic stability condition isa,0, with one
exception whenk50. For the critical casel250 ~i.e., for
the homogeneous modek50) we can do the standard stab
ity analysis by Lyapunov’s second~direct! method. Let us
consider the function

W5ñ21S c

a
ñ2ũD 2

. ~33!

According to Eqs.~31! and ~32!, we get

]W

] t̃
52añ21ñO„~ uñu1uũu!2

…. ~34!

We have from Eq.~34! that ]W/] t̃ ,0 if a,0, asserting
stability of solution for smallñ and ũ @23#. In the converse
case, whena.0, the solution is unstable.

Thus forFs,F0, whereF0 is the least positive root of the
equationa(k50)50 @i.e., F52hã(F)], the trivial solution
is stable against any small perturbations. In this case
ionization is small and the perturbations are removed fr
near-anode layer owing to the charge flows. However,

d
ib-
-

FIG. 3. Dimensionless anode voltage dropu versus averaged
electron densityn. Solid, dashed, and dotted lines indicate stab
absolute unstable, and Turing unstable solutions, respectiv
Curvea is calculated for parameters as in Fig. 2. Curvesb andc are

calculated at doubleb̃ andh, respectively.
5-6
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PHYSICAL MODEL OF ANODE GLOW PATTERNS IN . . . PHYSICAL REVIEW E64 046405
Fs.F0 ionization dominates over other processes and
system becomes unstable. Figure 4~a! describes various pos
sibilities concerning the first bifurcation of the trivial equ
librium state.

Second, we study the equilibrium states (n1 ,U1) and
(n2 ,U2) for Fs.F* . Analysis of Eqs.~23! and ~24! re-
vealed that typically the variablen acts as an activator andu
acts as an inhibitor in terms of nonlinear dynamics@24#. To
perform a stability analysis, we linearize the dynamic syst
~23! and~24! around spatially homogeneous fixed points
small space- and time-dependent fluctuations (dn,du)

;exp(l̃ t̃1iq̃x̃) and obtain the characteristic equation

jlk
22lk~jpk2vk!2S ] f n

]u
2

1

2h

] f u

]u D ] f u

]n
2pkvk50,

~35!

where for no-flux conditions~25! ~i.e., q̃5kp/ l with integer
k) the coefficients are defined by

FIG. 4. Linear stability diagrams for~a! trivial, ~b! lower, and
~c! higher branches resulting from Eqs.~23!–~25!. Bifurcation pa-
rameterFs is plotted against the dimensionless wave numbek.
Vertical lines indicate allowed discrete values ofk for a system

constrained by no-flux boundary conditions~i.e., k5q̃l /p). Param-
eters are as in Fig. 2 and additionallyl 5245 75.
04640
e

r

pk5
1

2h

] f u

]n
2

] f n

]n
2

p2

l 2
k2,

vk5
] f u

]u
1~q1w2n!

p2

l 2
k2.

The roots of Eq.~35! yield the dispersion relation

lk(1,2)5
jpk2vk

2j
6

1

2j F ~jpk1vk!
2

14jS ] f n

]u
2

1

2h

] f u

]u D ] f u

]n G1/2

. ~36!

We see that as k→`, (jpk1vk)
2→(q1w2n

2j)2p4k4/ l 4→`. Thus,lk(1,2) is necessarily real for a larg
k. Howeverlk may be complex on the lower branch forFs
@F* whenw2n,j2q andjpk1vk.0.

Modes with Re(lk).0 are unstable. As is easy to se
from Eq. ~36!, this requires

jpk2vk.0 ~37!

or

S ] f n

]u
2

1

2h

] f u

]u D ] f u

]n
1pkvk.0. ~38!

Inequality ~37! may be valid on the lower branch for
largeFs whenFa1Fp,2Fs and] f u /]u,0. In the case of
k50 inequality~38! is true if V,0, i.e., on the whole lower
branch. It is important that inequality~38! also will be valid
on the part of the higher branch (V.0) in range ofk around
a finite valuek5kc ~Turing instability!. This is fulfilled if

~q1w2n!S ] f n

]n
2

1

2h

] f u

]n D1
] f u

]u
,22@~q1w2n!V#1/2.

~39!

Since the right part of inequality~39! peaks atFs5F*
and decreases drastically with increasingFs , it follows that a
Turing instability occurs only in a limited rangeF* ,Fs
,Fc and characterized atFs5Fc by the intrinsic dimension-
less wave numberkc with

kc5
l

p S V

q1w2n
D 1/4

. ~40!

Figures 4~b! and 4~c! describe various possibilities con
cerning the first bifurcation of the lower and higher branch
of the equilibrium state, respectively. Figure 2~a! depicts the
stable ~solid lines!, absolutely ~saddle! unstable ~dashed
lines!, and Turing unstable~dotted lines! modes. We see tha
model ~23!–~25! has two stable equilibrium states over
certain range ofFs and thus it is a bistable system.

For a givenFs the zero eigenvalueslk50 are generally
simple, except for some exceptional values of parameter
the case of the Turing instability. Thus, the points on curv
in Figs. 4~a! and 4~b! corresponding to integer values ofk are
5-7
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necessarily bifurcation points of equilibrium states. For co
pleteness, we obtain the conditions under which in the c
of the Turing instability the eigenvaluelk is doubly degen-
erate. From Eq.~36! and lk5lk1m50, we get that this
rather exceptional condition may be written as

l 2V1/2

p2~q1w2n!1/2
5k~k1m!,

where m is a positive integer. The problem of degenera
eigenvalues is beyond the scope of our present work.

IV. SPATIOTEMPORAL DYNAMICS IN THE MODEL

To verify the model, we have made some numerical c
culations starting from the same conditions as in Ref.@25#
where model~1!–~2! has been applied for investigations
the anode glow. Thus in the results presented belowH
50.45 cm and the gas mixture N2 :He51:1 at p540 Torr
with the transport coefficientsA/p57.53107 s21 Torr21,
B/p5180 V cm21 Torr21, r 50, mep54.53105

cm2 Torr s21 V21, m i p51.753103 cm2 Torr s21 V21,
b5131027 cm3/s, Di /m i50.026 eV, andDe /me51 eV
has been used as a working gas. The bifurcation diagram
Fig. 2 just confirms to this conditions.

As expected, the model shows similar patterns as in@25#
~see Figs. 5 and 6!. Here, in the homogeneous initial datu

FIG. 5. Space and time variations of~a! anode voltage dropU
and ~b! normalized current densityJ/p2 for the mean current den

sity J̄55 mA/cm2. Physical parameters of the model arep540
Torr, De /me51 eV, b5131027 cm3/s, L53 cm, and H50.45
cm. The initial homogeneous state is marked3 in Fig. 2.
04640
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~point 3 on Fig. 2! we introduced small-amplitude~0.1%!
perturbations whose spatial period was 0.75 cm. The
charge voltageV(t) is preassigned to meet a given value
the mean current densityJ̄(t)[*Jdx/*dx55 mA/cm2. We
observed the growth of these perturbations and the forma
of a periodic current structure. Looking at details, one o
serves certain differences between the behavior of solut
of Eqs. ~23! and ~25! and basic equations~1! and ~2!. In
particular, in Fig. 5 the spatiotemporal dynamic calcula
for De /me51 eV holds the spatial regularity. The spatiotem
poral dynamics of solutions of the basic equations are reg
only for De /me&0.7 eV. Nevertheless the model also sho
secondary bifurcations forDe /me52 eV ~Fig. 6!. A similar
disruption of regularity is seen in experiments@4,2#. In addi-
tion we observe serious differences in the shape ofU as J
→0 @see Fig. 5~a!# because of limitation~19! ~i.e., when
Xr→L). Detailed consideration of the positive column r
vealed that at the middle of a stationary stripe ionization a
recombination processes balance each other locally to a
accuracy in both models.

Figure 7 shows the spatiotemporal dynamic in the abse
of any special initiating perturbations for structure develo

FIG. 6. Space and time variation of the normalized current d
sity J/p2 for the same conditions as in Fig. 5 with one exceptio
namely,De /me52 eV.

FIG. 7. Space and time variation of the normalized current d
sity J/p2 for the same conditions as in Fig. 5 with one exceptio
namely, in absence of any special initiating perturbations.
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ment. We observe that spontaneous perturbations freely g
because a finite number of decimal places in calculation
a nonzero tolerance of the iteration procedures. In simula
there is an initial delay of the order of a few hundred mic
second before the current structures start to develop, a
rapid growth the perturbations in the amplitude. This dela
in rough agreement with those experimentally obtained
elevated-pressure dry and dump air, N2, and likely CO2-laser
mixtures~see@1# and references therein!. The spatial period
of structure is determined by the~half-!wave numberk with
the largest positive eigenvalue for the initial value ofEs ~see
curve a in Fig. 8!. However, competition between curre
stripes has a substantial effect on their evolution, leading
suppression of one of the neighboring current stripes.
competition between them is irregular, and the pattern in F
7 is one of a number of realizations.

At small current densities the period of current structu
decreases with increasingJ ~see Fig. 8! in agreement with
experimental results@3#. However, when the current densi
is more than its value at the saddle-node point, the perio
current structures may increase withJ. The period and the
characteristic times of formation of the current structure a
their realignment are comparable with those obtained for
conditions in experiment@4#.

According to our numerical investigations, the genera
structures are stable against any small perturbations. H
ever, an attempt to change over from the large stripe wiI
5200 mA/cm to one withI 5100 mA/cm by a severe de
crease in the control parameterEs leads to the formation o
the three identical and equidistant stripes with the net cur
I 5100 mA/cm~see Fig. 9!. It is significant that the closely
spaced points ~0.083 66, 0.001 594! and ~0.083 68,
0.001 576! for the stripes withI 5200 and 100 mA/cm, re-
spectively, are placed in the vicinity of the local minimum
curve c ~under curveb) in Fig. 2~a!. The point ~0.083 58,

FIG. 8. Curvesa, b, and c show dependences of the large
dimensional eigenvaluel on the dimensionless wave numberk (k
5qL/p because of no-flux boundary conditions! for the initial con-
dition @point 3 in Fig. 2~a!#, saddle-node point@point A in Fig.
2~a!#, and critical point of the Turing instability@point C in Fig.
2~a!#, respectively. All other conditions were the same as in Fig
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FIG. 9. Decay of the large steady current structure after sev
reduction in the control parameterEs . Parameters areI (t50)
5200 mA/cm andI (t.0.2 ms).100 mA/cm. All other conditions
were the same as in Fig. 5.

FIG. 10. ~a! Dependences of the normalized current dens
J/p2 and electric fieldEs /p for the saddle-node point~curvesa and
c, respectively! and critical point of the Turing instability~curvesb
andd, respectively! as functions ofDe /me . ~b! Dependences of the
transverse periodL @defined as inverse ofq for the maximum of the
curvel(q)# for saddle-node point~curvea) and critical point of the
Turing instability~curveb) and the characteristic instability growt
time t @defined as inverse of the largest positive eigenvaluel at the
maximum of the curvel(q) # for saddle-node point~curve c) as
functions ofDe /me ~curve b). At De /me51 eV the physical pa-
rameters of the model are as in Fig. 5 and hence all parame
including the saddle-node and critical points confirms to Fig. 2.

.
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0.002 018! for the stripe withI 533.3 mA/cm is placed at the
maximum of this curve. The stripes withI .200 mA/cm are
unstable under the no-flux boundary conditions and u
transverse sizeL53 cm, and the system transfers to a sta
homogeneous state lying on curveb above pointC @see Fig.
2~a!#. If subsequentlyEs is decreased, the system shows h
teresis.

We now consider the characteristic properties of the
mogeneous and stationary solutions that describe the equ
rium states of model~23!–~25!. The behavior found in the
model is determined by the relative positions of saddle-n
point A, the critical point of the Turing instabilityC, and
initial homogeneous equilibrium state~say, point3) @see
Fig. 2~a!#. The influence ofDe /me , b, andH on the position
of pointsA andC in physical units and the characteristic tim
of instability t and the transverse periodL is shown in Figs.
10, 11, and 12, respectively. Saddle-node pointA is indepen-
dent of De /me variations. Butt and L increase sharply a
this point and the range (E* /p,Ec /p) of the Turing instabil-
ity is diminished withDe /me ~Fig. 10!. In the case unde
consideration the contraction of transversely bounded
tems is unlikely to be possible asDe /me.5.3 eV. The high
magnification of the diffusion coefficients is made possi
by gas flow turbulence. The saddle-node point is shifted
position with the lower current density and higher elect
field as b is increased@Fig. 11~a!#. At the same time the

FIG. 11. Curves are the same as Fig. 10, but as functions o
electron-ion recombination coefficientb. At b5131027 cm3/s all
parameters confirms to Fig. 2.
04640
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range of the Turing instability is diminished. The system
more stable for a large values ofb. Increasing the discharg
gapH shifts the saddle-node point to the lower both curre
density and electric field, and the period of stripes may
considerably enhanced~Fig. 12!. At H.1.9 cm the initial
equilibrium state with mean currentJ̄55 A/cm2 discussed
above@see point3 in Fig. 2~a!# shifts into the Turing insta-
bility region. Additional curvee in Fig. 12~a! shows the nor-
malized electric fieldEs /p for the De /me- and b indepen-
dent instability threshold of trivial solution as a function
H. Note that there is a distinct minimum inH andb depen-
dences of the instability growth timet at the saddle-node
point.

It is of interest to consider the properties of the mod
with the constraintJ5const. Under this condition the anod
potential dropU is approximately linear in the pressurep
~Fig. 13! and this is in agreement with experimental obs
vations in air@2,26#. The average electric fieldEs increases
with pressure at low currents~as in experiment@27#!, how-
ever, the opposite situation may occur at moderate curr
~Fig. 13!. This behavior is dependent on the ratio betwe
values of initial equilibrium and saddle-node point curren
The positive column, by itself, normally exhibits a negati
Ep(p) characteristic. At fixedJ and p the anode potentia

he
FIG. 12. Curves are the same as Fig. 10, but as functions of

discharge gapH. Additionally ~a! curve e shows the normalized
electric fieldsEs /p for the bifurcation point withk50 of the trivial
solution as a function ofH. At H50.45 cm all parameters confirm
to Fig. 2.
5-10
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drop U and the anode sheath thicknessXr are practically
independent of the discharge gapH. This appears to be
physically reasonable, but is inconsistent with observati
in air @26#. In another experiment in air@22# the H depen-
dence ofU is not as strong as in@26#. Experimentally the
caseJ5const were examined in detail, unfortunately, in
only. In an electronegative plasma refined versions of E

FIG. 14. Transverse profile of the normalized current den
J/p2 for various values of the net current through a stripe~curvesa,
b, c, d, ande for De /me51 eV and variousI 51,10, 40, 100, and
200 mA/cm, respectively; dashed curve forDe /me52 eV and I
510 mA/cm; dotted curve forDe /me51 eV and I 515 mA/cm
from @25#!. All other conditions were the same as in Fig. 5.

FIG. 13. Dependences ofU ~curvesa andb) andEs /p ~curves

c andd) as functions of pressurep. Current densityJ̄ is 5 mA/cm2

~curvesa andc) and 50 mA/cm2 ~curvesb andd). At p540 Torr
the physical parameters are as in Fig. 5 and hence confirms to
2.
04640
s

s.

~14! and ~13! contain an additional parameter 11n2 /ne
with n2 being the negative ions density@20#. If this param-
eter is a function ofH, the anode potential dropU and the
anode sheath thicknessXr may be depended on the dischar
gapH.

V. APPLICATION TO A LOCALIZED ANODE CURRENT
STRUCTURE

Curve c in Fig. 2~a! describes theFs dependence of the
dimensionless averaged electron densityn0 at the middle of

y
FIG. 15. Dependences of~a! J/p2 and ~b! U at the middle of a

single localized stationary stripe and~c! Es /p as functions of the
net currentI through a stripe. Physical parameters are as in Fig
~curvea!. This curve confirms to curvec in Fig. 2~a!. Curvesb, c,
andd calculated at doubleDe /me , b, andH, respectively.

ig.
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R. SH. ISLAMOV PHYSICAL REVIEW E 64 046405
a single localized steady structure~stripe!. The Fs depen-
dence of the dimensionless transverse sizeD5*ndx̃/n0 of
this stripe is shown in Fig. 2~b!. The current-density profiles
across the discharge for the stripes are shown in Fig.
From this figure we notice that increasing the current throu
a constricted discharge causes the glowing region to jus
the anode area in accordance with the normal low curren~at
I>40 mA/cm!. The existence of a critical value of bifurca
tion parameterFk such that the transverse sizeD→` asFs
→Fk @see Fig. 2~b!# is typical for bistable activator-inhibito
systems@24#. In the case under consideration it seems lik
that this critical point (Fk ,n(Fk)) is lying on curvec @see
Fig. 2~a!# and thence the normal current density and norm
anode voltage drop are a point of the homogeneous equ
rium state of the model. Earlier the normal current effect
the near-anode region has been investigated in the fram
the basic model~1! and~2! in cylindrically symmetric geom-
etry @28#. The shape of the subnormal spot is governed
located ionization processes and diffusion charge partic
while the normal anode spot is formed under the influence
the ionization and recombination processes and the tr
verse transport of charge particles in complicated elec
field. WhenDe /me increases~dashed curve in Fig. 14!, the
current profile becomes more spread. A comparison of
calculated results with@4# revealed that the current-densi
profile of the basic model is smoother and wider than t
from model~23! and ~24! ~see Fig. 14!.

Figure 15 shows the dependences ofJ/p2 and U at the
middle of stripe andEs /p as functions of the net currentI
through the stripe. Curvea corresponds the data forDe /me
51 eV in Fig. 14. Figure 15~a! shows that in the intermedi
ate range of current~say, 3,I ,20 mA/cm! the current den-
sity increases logarithmically with an increase in the d
-
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charge current. The subnormal stripes with very low curre
are independent of recombination processes and would
quire an increased electric field and a great anode volt
drop ~Fig. 15!. The normal current density decreases w
De /me @see curvesa andb in Fig. 15~a!#. It seems likely that
this effect is even more pronounced than in the case of
lindrically symmetric geometry@28#. The stripe parameter
(J/p2,U) are defined by rather a summary diffusion los
(;HDe) @see curvesb andd in Figs. 15~a! and 15~b!#. How-
ever theDe /me- andH dependences of the average elect
field Es are essentially different.

VI. CONCLUSION

We presented a one-dimensional physically self-consis
model of high-pressure dc discharges that takes into acc
the main physical processes in near-anode plasma and
tive column. The model involves a pair of coupled reactio
diffusion equations of an activator-inhibitor-type. Numeric
simulations show that this model displays spontaneous g
eration of complex current structures or a single spot at
anode and reflects most of the properties of basic mult
mensional drift-diffusion model~1! and~2!. In contrast to the
variables of basic equations~1! and ~2!, the variables of
model ~23! and ~25! admit homogeneous solutions in th
strongly longitudinal-inhomogeneous near-anode layer. T
makes possible the using of standard stability and bifurca
analysis. The discharge gap, volume electron-ion recomb
tion, and especially electron diffusion have a profound eff
on the collective interaction of current structures. The p
dictions of the model match the available experimental
sults to a satisfactory extent, particularly with respect to
anode pattern formation.
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