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Physical model of anode glow patterns in elevated-pressure gas discharges
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A physical self-consistent model is developed to explain single spots or complex current structures at the
anode of elevated-pressure parallel-plate dc discharges. The model is based on a fluid description of electron
and ion transport coupled with Poisson’s equation and involves a pair of coupled reaction-diffusion equations
of an activator-inhibitor-type. This system of one-dimensional equations containing no phenomenological
(adjustable parameters allows one to find the current-den&igtivato) and anode potential drofinhibitor)
distributions on the anode surface. In a certain range of supply voltage, an anode glow stratification, resulting
in the formation of separate glowing regions, takes place. However, the growth of perturbations and formation
of a spatially periodic current pattern are complicated by competition between the current stripes, leading to
suppressing of the neighboring current stripes. The bifurcation behavior of the model with respect to the
characteristic electron energy, recombination coefficient, and discharge gap has been analyzed. The properties
of a single anode current structure, including the normal current density effect, have been investigated. The
application of these results to available findings in experiments and two-dimensional numerical simulations is
discussed.
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[. INTRODUCTION state by using the experimentally or numerically defined
current-voltage characteristjd6,17. These approaches re-
The investigation of discharge stability and conditions forsult in interesting static and dynamic patterns and were able
homogeneous discharge burning is of practical significancé reproduce many patterns and scenarios observed experi-
in a number of applications. It is knowd] that an elevated- mentally in the laterally extended dc and ac discharge sys-
pressure self-sustained glow discharge far from the walls ofems. Several phenomenological aspects of uniform glows
chamber is unstable with respect to constriction to the col2nd spots are, however, still uncertain, as are many details of
umn at high current density. The anode spots are usuallfheir theory. _ _ _
circular. The laminar gas flow transverse to the current de- The main purpose of the present work is to obtain a sim-
stroys the column and the anode spots are converted intoRdified physically self-consistent model of the anode glow
number of Stripes a|ong the gas ﬂ(ﬁw_zﬂ In the absence of stratification in elevated-pressure parallel-plate dc dis-
gas flows stripe patterns in current distributions are observegharges. Our principal assumption is that the asymptotically
in silent gas dischargd$] and dc discharge systems with a equivalent equations for the current-density and anode poten-
high-resistance semiconductor cathdé¢ The most cred- tial drop distributions on the anode surface are derivable
ible cause of the plasma inhomogeneity formation near eledrom a basidthree-dimensionalffuid description of electron
trode is the negativity of a volt-ampere characteristic of theand ion transport coupled with Poisson’s equation. In this
electrode layef7], which is in conformity with the contrac- Paper we present a detailed investigation of this model, and
tion dynamic and the weak sensitivity of instability evolution Show that it provides most of the basic features of a current
to discharge conditions and gas composition. Numericallypattern formation of the basic model.
within the frame of pure electrodynamic phenomena, the The paper is comprised of six sections. In Sec. Il a two-
possibility of an instability growth in electrode regions hascomponent reaction-diffusion system of activator-inhibitor-
been shown ifi8]. The spontaneous stratification of the glow type is derived from a basic fluid description of charge trans-
in elevated-pressure gases has been demonstrated by num®g!t in the discharge volume including both near-anode layer
cal simulations in near-anode plasnia$, dielectric barrier and positive column. Section Ill contains results from bifur-
discharges[9], and discharges with metallic electrodes cation analysis concerning the formation of spatially periodic
[10,11). However, as in the case of physical experiments, thétripe patterns. Section IV explores, analytically and numeri-
results of numerical experiments need clarification. Thecally, the possible scenarios of instability evolution to the
similarity in the patterns these very different discharge systegular or irregular localized particlelike structuresripes
tems display, suggests that the patterns should be unde?f the near-anode plasmas. The properties of a single stripe
standable in term of simplified models that do not include all@nd the normal current-density effect are discussed in Sec. V.

of details of the fundamental dynamical equations. Finally, in Sec. VI some conclusions are drawn.
Most of the theoretical investigations of the current pat-
terns(for instance[12—15) are based on strongly phenom- Il. BASIC EQUATIONS

enological equations for the current-density distribution

across the electrode surface. A second description of the cur- The simplest set of equations containing the basic physics
rent pattern formation has been developed on physicatecessary for formation of constricted discharge structures
grounds for small deviations from a lateral-homogeneousre the well-known continuity equations in the drift-diffusion
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FIG. 1. Schematic diagram of the glow discharge used in this_ pel i
study. The gap between the anode and the positive column he

defines the model region.
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in gas-discharge chambers with a thoroughly segmented
cathode and a flat, solid anofig). That makes it possible to
also avoid a number of difficulties related to the applicability
of basic model1) and(2) for describing regions of cathode
drop, negative glow, and Faraday dark space.

The following boundary conditions have been taken:
=V (V=const>0), I';-v=0, I'y:- v=0¢n, for the anode;
=0, dnijldv=0, [Fa+ (me/p)I;]-v=0 for the positive
column head;dn./dv=dn;/dv=3deldv=0 for the lateral
surfaces. In these casasjs a unit vector with the external
normal for the discussed surfaces, is the coefficient re-
sponsible for the electron flux interaction with the anode
surface. The boundary condition for the electron flux in the
positive column head is retained a typical form for the cath-
ode (with the effective secondary emission coefficient
), but it fulfills requirement of the quasineutrality

%&: n; when dn./dv=0. The boundary conditions on the
at

eral surfacesx=0 andx=L) maintain the conditions for
the electron and ion impermeability. Thus the calculation re-

approximation for electrons and positive-ions coupled withdion may be interpreted as a periodic pattern cell.
Poisson’s equation for the electric field, along with various Anode and cathode spots have a complex, poorly under-
constituent relations involving the discharge plasma coeffiStood morphology, even for the simple plane-parallel dis-

cients

6nJ
a—t'f‘V'FJ:Sj y
q.
sz_Djan_mﬂjnjV(p, (1)
1
Vip=——2 qnj, 2)
€0

J:; q;l';,

wheren; is the particle densityj=e or i for electrons and
positive ions, respectivelyu;, D;, andg; are their mobil-
ity, diffusivity, and chargeg is the electric potential] is the
current density, and, is the permittivity of free space. In
the case being consideres,=S;=n(a— Bn;), wherea is

charge geometry. Due to the severe nonlinearity and strong
coupling of equationg1) and (2), the treatment of these
equations is a difficult problem. We therefore restrict our-
selves to a limited set of conditions, ignoring gas heating,
plasma chemistry, and nonlinear surface effects. However,
these factors can become more important as the current in-
creases.

The local field approximation is used to obtain the ioniza-
tion rate. It is assumed that the ionization rate depends on the
local coordinates only through the normalized local electric
field E/p, whereE=|V ¢| is the magnitude of the field arx
is the gas pressure. The ionization term is a very strong func-
tion of the value ofE/p, and this has played a dominant role
in the case under consideration. To simplify the calculation
and analysis, the electron and ion mobilities and diffusion
coefficients are assumed to be field independent and the ratio
D./ue for electrons is chosen as a parameégfectively the
electron temperatuye

The system of equationd) and(2) can be rewritten as

2=
the frequency of direct ionization an@l is the electron-ion Vie=—yp, ()
recombination coefficient. The gas is assumed to be electro- _
positive. dpldt+V-I'=0,
In most cases, the contraction of self-sustained quasista- I'=(D.—D)VN—D Vp—( ot 2NV 0 s pV
tionary glow discharges at elevated-pressure gases is pre- e e” DiVPT (HeT Li)TleV @ Mip ‘P'(4)

ceded by the formation of anode spftg. It seems reason-

able to say that in many cases the formation of anode 9

structures is relatively independent of the near-cathode pro- ﬁ(ne+ 0p)—DV?ng— 0D, V2p—0u;V-(pV )
cesseqd18]. That is why here the discharge region under

study was chosen to be between the anode and the head of =ngd a—B(ng+p)], (5)
the positive columr(see Fig. 1 Excluding the cathode re-

gion from consideration makes it possible to obtain a simpli- J=eT,

fied physical self-consistent model of anode glow stratifica-

tion and examine an array of problems that are not directiwhere y=e/e,, p=n;—n, is the charge densityin un-
related to the conditions near the cathode, but are importarsigned electronic charge uré), 6=pu/(pmet+ pi), andDg
in a number of technical applications characterized by ar=(ueD;i+ uiDe)/ (et 1) is the ambipolar diffusion coef-
elongated, volumetrically uniform, positive colunisuch as ficient. Equation(4) is the charge conservation equation.
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Equation(5) is the sum of Eq(1) for the electrons and

positive ions multiplied by factor®u;/u. and 6, respec-

tively.

Integrating Eqs(3)—(5) over the longitudinal coordinat
Z, we obtain equations for the averaged electron derigity dt
=(1H)fHn.dz and the anode potential drag=f}(E,

—E,)dz Hereafter, we will use the subscripto denote
longitudinal component of a variable amdits value on
anode ¢=0), andp its value at the positive column
(z=H). Note thatp—0 andE,—E,—0 asymptotically
z—H [19].

Multiplying Eq. (4) by a factorz and integrating over
between anodez&=0) and positive column heaa€H), we

obtain

H

dz+V fHFd+fHﬁFZd—o
atopzz J_'OZJ_Z 02(9Z z=0, (

where the subscript denotes the transverse compon
variable or operator.
The first integral in Eq(6) is given by

H
JpZdZ_——J (e, +V2¢p)zdz

U+H2v2 1-X2)U
7 6_')/ L[( E) ],

(

where Xf'=

thickness of anode sheath.
Note also that

U=(Es—EpH, (
whereEs=V/H is the average electric field.
The next term in Eq(6) is defined by

H H
Vi-f zFidz=fo [(De—Dj)ne—Diplzdz
0 0

H
-V, fo [(pet mi)Net uip]V, @zdz

2 2 D 2 V2
= 7(De—Di)VLN+ 7Vl[(1—XE)U]

H? —
+ & (et ) Vi {NV,[(1-XE)UT}

—f—;vim—x_E)uZ],

whereXg= Xm with m=1.
The last term in Eq(6) is given by

i

ar, _
ZEdZ:(Fp—F)H,
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the where the averaging overis denoted by the vinculum.
Thus we have the equation for the anode potential drop

e U _HJ

2
5 5 Vi(1-X3)U]

yH?
e 5~ (De=D)VEN
head

as

yH?
+—(,U«e+ﬂ|)VL {NV, [(1—-XE )U]}

Hi Ve
+DVIU- V(1= Xe)U?] -y, ©)

wheref = yH(I'—T,) and'=(1H) [T dz

6) Further averaging Eq5) overz, we get

Jd — _
ent of a—t(N+Gp)—DSVEN—GDiVEp—ﬁ,uiVl~(pVL<p)
0. o o e |
_ﬁ SE iE_ MiPEZ o
:ne[a_,B(ne+P)]-

The ionization term is a very strong function of the value
of E/p. Hence, assuming thaE(/E,)ng|,=n¢,=N, the
term on the right side of the equation can be written as

7)

(1+m) [§(E,— Ep)(Z/H)"dZ/ [§(E,— Ep)dz
(with m=2 in this casg is the appropriate dimensionless

E _
ne[a—ﬁ(ne-i-p)]:NE—pa— ap+N(ap—BN)—BNp.

Taking into account the boundary conditions and the esti-
mation 2yV , - (pV, ¢)=V?EZ we have

8)

J
E(N+9p) DV N+¢9DVLp+—V2E2 fu,
(10)

where fN=N((Oui /H)Ep— (Ep/Ex) a— ap— ap+ BN

+ Bp). BecauseJ/N=e(u.+ u;)Es=const, this equation
governs in essence the current-density distribution on the
anode surface. Previously E¢l0) was successfully em-
ployed to describe the peripheral part of the current struc-
tures[4].

The terma— a, can be approximated by the product of
the average value ot —a, and the ratio of average anode
sheath thicknesX to H. These average values we will cal-
culate with the weight functiorh(z)=p(z)/fgp(z)dz. In
that event the thicknesX is defined as the characteristic
quasineutrality breakdown dimension in the near-anode re-

gion X, =z ,=f§zpdz [ pdz. Therefore,
A X
=Lllg— _ Ny
a—ag= "Ll el IIzll,= sz (a—ap)dE,

where\ , is an unknown parameter of the order of unity.
The average charge in the near-anode plasma is equal to
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- H yH
p=——J (¢! +V2o)dz fuwﬁe (a ap)dE— ZMeNEp. (15)
1 _
_ (E Eo)+ EVE[(l—Xe)U]- It now follows that
20,114 Ea
As a rule the anode sheath thickness is considerably less fn=- YH2y fu+t V_HJE (@—ap)dE=N(ap—BN),
than the discharge gafpe., X,/H, XE,X§<1) and p<<N, € P
hence Eqs(9) and(10) may be simplified to wherell=26/y+ )\poEpN/H;Ea. It is clear that the val-
uesN and E, for lateral-homogeneous states of the model
~D.V2N+ Oui Vz[(E —EgU]- ﬂvzu —fy. under study and for the asymptotic modl&€9] are necessar-

ily identical. Therefore, II=0 [this means that\,
(1) =26/(xy)], so that

U H?2 g yH? yH? 26
e 5 VAU= (D= D) VIN+ T fy=— —fy~N(ap— BN). (16)
yH pe
6D; Th f ion-diffusi i d(12
XV | — + (et u)N|V, UL —F, 12 e system of reaction-diffusion equatiofid) and(12)
L| yH? (bt pi) + } v (12 with Neuman (no-flux) boundary conditions, where the

source termg andfy are given by Egs(15) and(16) and
_ _ 21 Ea the coefficientsE, and E, are defined from Eqs(8) and
where In=NL(Om TH)E, (0, X, Ep /oM pEa)IEP(a (14), respectively, constitute the full set of equations of the
—a_p)dE— a,+ BN]. If we replace the_ average valug bf model.
by its half-sum at the anode and positive column higad, The above results, obtained by means of the asymptotic
I'=(T'y+T')/2], we obtain fy=(yH/2)(T',—Tp). The expansion in terms of the small parameters, relate to the case
small value ®,/(yH?) provides a strongly parabolic condi- in which a thin boundary layer develops because of the elec-
tion for Eq. (12) asN—O. tron diffusion, but the profile of plasma parameters inside the
In order to get a completed self-consistent model we useelatively thicker anode sheath is basically determined by the
asymptotic result§19] for ', andE,. The presence of the breakdown of quasineutrality. From the comparison between
small parametee =X, /H, with X,=De/(ucE,) being the X, andX,=U/(E,—E,) we find that this corresponds to the
relaxation length of the spatial disturbance scale due to difeondition
fusion electron leakage to the anode, makes it possible to use
an asymptotic method for constructing an approximate solu- De Ep
tion of the problem for the laterally homogeneous state. The E 1- E_a <U. (17
use of these asymptotic results is generally based on the as-
sumption that the longitudinal distributions of the electrical Condition(17) can be rewritten as
field and electron and ion densities are scarcely affected by
transverse charge fluxes if the current dendifg fixed for
the positionx under consideration. The fact, that the thick-
ness of near-anode layer is usually much less than the trans-

verse dimensions of current structures, supports the validity Another limitation arises because of the condltlﬁg

of this assumption. According to Eq®.7) and(3.9) in Ref. <1 used for Eq(12) that can be written as
[19] (for comparison see also Eq&4) and(37) in [20] for

2u
<
YDe

E2(Ea—Ep). (18)

electronegative gasgshe leading(nonperturbefterms for 16w,
I', andE, may be determined by using I'> H Ea(Es—Ep). (19
2pe ( )dE, 13 In accordance with the most commonly encountered ap-
Ta= v ) E “T % proximations, the dependence®fbn the electric fieldE can
be represented in the form
_ 2
_ Ea BBl (14 a=A(E/B)" exp(—BIE), 20
Ep yN 7

whereA/p, B/p, andr are constants for a given gasis gas
wherex=1+a,+2a,+---, (1, @1, as, ... designate the pressure. If so, changing to dimensionless independent vari-
coefficients of asymptotic expansion of an integral in a serieables according to
with  the  small  parameter 6=1-E,/E,), v
=2(ual wd) [ il e IN(1+ i /)] (=1 fOfM|/Me<1) n=2HN u:i, F_E, T=AtL (D)
Using Eq.(13), we get 2A HB B
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rapy ks eV, =2 andi=\[oL
X= D—x, i.e., l—x andl= D-

S S

a,Fa a,Fp

Fa ~ ~
! Lp(“_ap)d':z 2+r+1F, 2+r+1F,

and defining —ap(Fa—Fp). (29
~ a .~ 2B i If both Bp=const andHp=const, the dimensionless
=N B= Y_M &= E variables and all parameters of mod28)—(25) arep inde-
pendent and the present model obeys similarity laws in
D, HA HZA physical space with invariantp, xp, U, E/p, andJ/pZ.
ﬂID—e, h:_ZB,LLi , W= 3Ds, (22)

I1l. LINEAR STABILITY ANALYSES

Under discharge voltage control, i.e., fixed control param-
eterF, the model described by Eq23)—(25) has at least a
&_nNVEnJr ! fu=fn, fo=—n(a,—Bn); (23 trivial equilibrium staten=0 (no current flows In addition,
saddle-node bifurcation occurs Bf=F, and a pair of the
homogeneous fixed point1{,U;) and (,,U,) arises as
au F.>F, [see Fig. 2a)]. We will use the parametd¥ as the
E—==V - [(9+Wn)V, u]-f,, bifurcation parameter. In terms of the basic model the quan-
It tities n and F4 correspond to the current density and dis-
. charge voltage, respectively, which are physical quantities of
fu:f a(;_ap)dp_npp; (24)  interest. Thus Fig. @) shows the normalized static current-
Fp voltage characteristic. The model predicts the negative slope
of the curveu(n) in accordance with experimef22] in air

an au an and only a slight fall inu with a rise in the electron-
d N, and onl light fall i ith a rise in the el
6_7( }:0|:3_§(~ =0 (29 jon recombination coefficienB (Fig. 3). Sincedn/dF =00
' x=0| asF,=F, , it follows thatF, is given by the equation
ol Fs=F foll hatF, by th
with Q:O,
Fa=Fp++hnu (200 \where
and g ot dty ot i
Fp=Fs—uU. 27) ~dn du 9n du’ (30
In this final system we use the simplified soluti¢26) for The root of this equation can be obtained iteratively
Eq. (14) and drop terms with little importance at conditions
of interest to us.
The integral in Eq(24) is expressed by the equation Fo=g+ 1— 49 1— 49
Fa ~ -~ 1 1 . . .
J (a—ap)dF=T _1_r’F_ -T _1_r’F_ whereg is the solution of the equation
Fo a p

- ~ 1 1
—ap(Fa—Fp), (28) BG* ex —G)9ex 3

WhereF(a,y)Ef;)e*ttafldt is the complementary incom- with
plete gamma function. For the case of large valueg-bfl

—a considered the expansi¢al] h
m G(g)=g+ —~geXD(——
“yyd (1-49)B

I'(ay)= ey gk(y)

Then the bifurcation point r(, ,u,) is defined as

P [exp(-1/g)/B.F.—g]. o
Gir2(Y) = (1-a—=2Ky)ge(y) +y(y+1-a) = gu(y), First we study the trivial equilibrium staten(u)=(0,0).

y To perform a stability analysis, we linearize the dynamic
system (23) and (24) around this spatially homogeneous
fixed point for small space- and time-dependent fluctuations

may be used. Retaining in E@8) only the principal term of ~ (8n, 5u) =[n exp(gx),uexp(gx)], and obtain the set of equa-
the asymptotic expansion, with good accuracy we have tions

go=1
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FIG. 3. Dimensionless anode voltage droprersus averaged
4 electron densityn. Solid, dashed, and dotted lines indicate stable,
4000 absolute unstable, and Turing unstable solutions, respectively.
Curvealis calculated for parameters as in Fig. 2. Curhesdc are
2000 | calculated at doubl@ andh, respectively.
0 _ where Q and R are free from terms of degree below two,
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F as=a(Fg)=F; exp(—1/Fy).

s

FIG. 2. (a) Bifurcation diagram in the planen(F¢) for model
(23) and(24). Curvesa andb showF¢ dependence at for trivial
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The linear part of Eqs(31) and (32) yields the eigenval-
ues

and bifurcation solutions, respectively. Solid, dashed, and dotted
lines indicate stable, absolute unstable, and Turing unstable equilib- . . . .
rium states, respectively. The instability region of the trivial solu- Modes withA>0 are unstable. Sincé<0, the instability

tion (i.e., Fs>F;=0.093 14) lies exterior to the plot. Poirdsand

condition isa>0. The Neumann boundary conditiofi5)

C mark the saddle-node bifurcation and the critical point of theallow only cosine modes cagk), whereq=k/| with inte-

Turing instability, respectively. Poink is referred to in Fig. 5.
Curve c showsF dependence ofi, for solution in the form of a
single localized stationary stripe, wharg=n at the middle of this
stripe. (b) Fs-dependence of the dimensionless transverse &ize
= [ndx/ny of this stripe. Parameters of the model &re 2142.9,
B=0.002526,w=2128.3,£=0.003 889, andy=0.000 100 6.

on - - -
—=n(a+yn+6u+Q), (31
U~ - .
Ezn(c+,8u+R)+du (32
with
Fs -, - 1 3o
a=as—5-—0%  y=-4h 7_%+4F§’
= 9~ 1  has
c=—, d=-—-0% =+ :
3 ¢ P 2¢F2

ger k. The asymptotic stability condition iga<<0, with one
exception wherk=0. For the critical case,=0 (i.e., for
the homogeneous modte=0) we can do the standard stabil-
ity analysis by Lyapunov’s secondirect method. Let us
consider the function

- [c ~\?
W=n?+|-n-u] . (33
a
According to Egs(31) and(32), we get
— =2an?+no((|n|+u])?). (34)

We have from Eq(34) that sW/at<0 if a<0, asserting
stability of solution for smalh andu [23]. In the converse
case, whera>0, the solution is unstable.

Thus forFs<F,, whereF is the least positive root of the
equationa(k=0)=0 [i.e., F=2ha(F)], the trivial solution
is stable against any small perturbations. In this case the
ionization is small and the perturbations are removed from
near-anode layer owing to the charge flows. However, for
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0.083 2

1 of of T
stable pk:%&_nu_&_r:_ﬁkz’
unstable 2
< 0.081 F ‘ ‘ ‘ of,
=4 (9+
V=0 (O+w n)
©) no solution The roots of Eq(35) yield the dispersion relation
0.079 . ' : m ;
k _§Pk—v
012 M=% 25 25 (épctuw)?
of, 1 oaf,\ af,]*?
0.10 b unstable A -5 oa an (36)
- stable We see that as k—®, (épctuy)’—(9+w?n
0.08 -——-- — &)2m*1*— 0. Thus, Ny 2 is necessarily real for a large
L no solution k. However\, may be complex on the lower branch fieg
0.0 . . . . >F, whenw?n<¢—9 and ép,+uv,=0.
o 10 20 30 . 40 Modes with Re},)>0 are unstable. As is easy to see
from Eq. (36), this requires
0.100F ‘ Epk—vk=>0 (37
- unstable
or
= 0096 T oty 1 of,) df, o =0 .
siannns gu  2h du Pi 38)
0.092 F (@) , , , , Inequality (37) may be valid on the lower branch for a
0 10 20 30 ;40 large Fs whenF,+F<2F¢ and df,/du<0. In the case of

k=0 inequality(38) is true if 1<0, i.e., on the whole lower
FIG. 4. Linear stability diagrams fd@) trivial, (b) lower, and  branch. It is important that inequali38) also will be valid
(c) higher branches resulting from Ed23)—(25). Bifurcation pa-  on the part of the higher branck)(>0) in range ofk around
rameterF is plotted against the dimensionless wave numker a finite valuek=k. (Turing instability. This is fulfilled if
Vertical lines indicate allowed discrete values lofor a system
constrained by no-flux boundary conditiofi., k=ql/7). Param-
eters are as iz Fig. 2 and addit)i/onalkye 2?12 75. i T 2[(0+w n)Q]llz

ou
(39

on  2h odn

of, 1an) af,

F<>F, ionization dominates over other processes and the
system becomes unstable. Figute)4lescribes various pos-
sibilities concerning the first bifurcation of the trivial equi-
librium state.

Second, we study the equilibrium states; (U;) and
(n,,U,) for F,>F, . Analysis of Egs.(23) and (24) re-
vealed that typically the variableacts as an activator and
acts as an inhibitor in terms of nonlinear dynanfi2d]. To Ke=—
perform a stability analysis, we linearize the dynamic system
(23) and(24) around spatially homogeneous fixed points for

small space- and time-dependent fluctuationdn, §u) Figures 4p) and 4c) describe various possibilities con-
cerning the first bifurcation of the lower and higher branches

of the equilibrium state, respectively. Figur@Rdepicts the
stable (solid lineg, absolutely (saddle unstable (dashed
’ of, 1 of,)\ of, lines), and Turing unstabléotted lineg modes. We see that
§>\k—7\k(§pk—vk)—( o0 2h &u) — Pkwk=0, model (23)—(25) has two stable equilibrium states over a
(35) certain range of¢ and thus it is a bistable system.
For a givenF4 the zero eigenvalues,=0 are generally
_ simple, except for some exceptional values of parameters in
where for no-flux condition$25) (i.e., =k /I with integer  the case of the Turing instability. Thus, the points on curves
k) the coefficients are defined by in Figs. 4a) and 4b) corresponding to integer valuesloére

Since the right part of inequality39) peaks atF=F,
and decreases drastically with increading it follows that a
Turing instability occurs only in a limited rangg, <Fg
<F. and characterized &= F by the intrinsic dimension-
less wave numbek. with

1/4
Q

I+w?n

(40)

~exp(ﬁ+ia§<) and obtain the characteristic equation
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FIG. 6. Space and time variation of the normalized current den-
sity J/p? for the same conditions as in Fig. 5 with one exception,
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2 eV (Fig. 6). A similar

necessarily bifurcation points of equilibrium states. For com-disruption of regularity is seen in experimefds2]. In addi-

pleteness, we obtain the conditions under which in the caston we observe serious differences in the shap& afs J

=[Jdx/[dx=5 mA/cnt. We
observed the growth of these perturbations and the formation
of a periodic current structure. Looking at details, one ob-

the mean current densiti(t)
Figure 7 shows the spatiotemporal dynamic in the absence

poral dynamics of solutions of the basic equations are regular
only for Do/u.<0.7 eV. Nevertheless the model also shows
of any special initiating perturbations for structure develop-

perturbations whose spatial period was 0.75 cm. The dis-

(point X on Fig. 2 we introduced small-amplitude.1%
charge voltagé/(t) is preassigned to meet a given value of

namely,Do/u.=2 eV.
serves certain differences between the behavior of solutions

of Egs. (23) and (25) and basic equationg€l) and (2). In

and (b) normalized current density/p? for the mean current den- patrticular, in Fig. 5 the spatiotemporal dynamic calculated
recombination processes balance each other locally to a high

for Do/ue=1 eV holds the spatial regularity. The spatiotem-
accuracy in both models.

vealed that at the middle of a stationary stripe ionization and

—0 [see Fig. Ba)] because of limitation19) (i.e., when
X,—L). Detailed consideration of the positive column re-

secondary bifurcations fdDq/ e

0.45

3 cm, andH

515 = K(k+m),

1x10° 7 cmils, L
w2 (9+w?n)

cm. The initial homogeneous state is markedn Fig. 2.
IZQ 1/2

(b)

FIG. 5. Space and time variations @ anode voltage drop)
5 mA/cn?. Physical parameters of the model gre-40

sity J
To verify the model, we have made some numerical cal-

IV. SPATIOTEMPORAL DYNAMICS IN THE MODEL

G-HoL, wovn) far

of the Turing instability the eigenvalue, is doubly degen-

erate. From Eq(36) and A =\, ,,=0, we get that this

rather exceptional condition may be written as
wherem is a positive integer. The problem of degenerate

eigenvalues is beyond the scope of our present work.
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for the same conditions as in Fig. 5 with one exception,

FIG. 7. Space and time variation of the normalized current den-
2

sity J/p
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As expected, the model shows similar patterns g2
(see Figs. 5 and)6Here, in the homogeneous initial datum namely, in absence of any special initiating perturbations.

Fig. 2 just confirms to this conditions.
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50

40

30

20

A(ms!)

10

-10
FIG. 9. Decay of the large steady current structure after severe

reduction in the control parametdt;. Parameters aré(t=0)
=200 mA/cm and (t>0.2 ms)=100 mA/cm. All other conditions

FIG. 8. Curvesa, b, and ¢ show dependences of the largest Were the same as in Fig. 5.

220 -

dimensional eigenvaluk on the dimensionless wave numbetk 200 ¢ 16

=qL/m because of no-flux boundary conditigrisr the initial con- (a)

dition [point X in Fig. 2(a)], saddle-node poinfpoint A in Fig.

2(a)], and critical point of the Turing instabilitypoint C in Fig. & 160 _ ~

2(a)], respectively. All other conditions were the same as in Fig. 5. & g
£ o120 =

ment. We observe that spontaneous perturbations freely grong 1" E

because a finite number of decimal places in calculation an¢Z 80 =

a nonzero tolerance of the iteration procedures. In simulatiorg | -

there is an initial delay of the order of a few hundred micro- 40

second before the current structures start to develop, and

rapid growth the perturbations in the amplitude. This delay is 0 P R A iy

in rough agreement with those experimentally obtained in 0.1 1 10

elevated-pressure dry and dump aig, Mnd likely CQ-laser D¢/ (eV)

mixtures(see[1] and references therginThe spatial period

of structure is determined by tHbalf-)\wave numbek with

the largest positive eigenvalue for the initial valueEqf(see
curve a in Fig. 8. However, competition between current
stripes has a substantial effect on their evolution, leading tc
suppression of one of the neighboring current stripes. The
competition between them is irregular, and the pattern in Fig.
7 is one of a number of realizations.

At small current densities the period of current structures
decreases with increasinh(see Fig. 8 in agreement with
experimental resultg3]. However, when the current density
is more than its value at the saddle-node point, the period o
current structures may increase withThe period and the
characteristic times of formation of the current structure and
their realignment are comparable with those obtained for like D Iy, (eV)
conditions in experimerii4].

According to our numerical investigations, the generate
structures are stable against any small perturbations. Ho
e_ver, an attempt to Change_over from the large stripe With andd, respectively as functions oD,/ .. (b) Dependences of the
=200 ”_‘A/Cm to one withl =100 mA/cm by a Severe de- transverse period [defined as inverse af for the maximum of the
crease |n_the (_;ontrol parar_neﬂég Iead'_s to th_e formation of curveX(q)] for saddle-node poircurvea) and critical point of the
the three identical and equidistant stripes with the net currenting instability (curveb) and the characteristic instability growth
I =100 mA/cm(see Fig. 9. It is significant that the closely {ime - [defined as inverse of the largest positive eigenvaliag the
spaced points (0.08366, 0.001594 and (0.08368, maximum of the curver(q) ] for saddle-node poincurvec) as
0.001576 for the stripes withl =200 and 100 mA/cm, re-  functions of D/ue (curveb). At Dg/ue=1 eV the physical pa-
spectively, are placed in the vicinity of the local minimum of rameters of the model are as in Fig. 5 and hence all parameters
curve ¢ (under curveb) in Fig. 2@). The point(0.08358, including the saddle-node and critical points confirms to Fig. 2.

T (ms)

A(cm)

FIG. 10. (a) Dependences of the normalized current density
_/p2 and electric fielce, /p for the saddle-node poircurvesa and
c, respectively and critical point of the Turing instabilitycurvesb
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FIG. 11. Curves are the same as Fig. 10, but as functions of the
electron-ion recombination coefficiegt At =1x10"7 cnr/s all
parameters confirms to Fig. 2.

FIG. 12. Curves are the same as Fig. 10, but as functions of the
discharge gafH. Additionally (a) curve e shows the normalized
electric fieldsEg/p for the bifurcation point wittk=0 of the trivial
solution as a function ofl. At H=0.45 cm all parameters confirms
0.002 018 for the stripe withl =33.3 mA/cm is placed at the to Fig. 2.
maximum of this curve. The stripes with>200 mA/cm are
unstable under the no-flux boundary conditions and usef@nge of the Turing instability is diminished. The system is
transverse size =3 cm, and the system transfers to a stablemore stable for a large values gf Increasing the discharge
homogeneous state lying on curfs@bove poiniC [see Fig. gapH shifts the saddle-node point to the lower both current
2(a)]. If subsequenthE, is decreased, the system shows hys-density and electric field, and the period of stripes may be
teresis. considerably enhance@Fig. 12. At H>1.9 cm the initial
We now consider the characteristic properties of the hoequilibrium state with mean curredt=5 Al/cn? discussed
mogeneous and stationary solutions that describe the equilitdbove[see pointx in Fig. 2(@)] shifts into the Turing insta-
rium states of mode{23)—(25). The behavior found in the bility region. Additional curvee in Fig. 12a) shows the nor-
model is determined by the relative positions of saddle-nodenalized electric fieldE./p for the Do/ ue- and B indepen-
point A, the critical point of the Turing instabilitlC, and  dent instability threshold of trivial solution as a function of
initial homogeneous equilibrium statsay, pointX) [see H. Note that there is a distinct minimum k and 8 depen-
Fig. 2@)]. The influence oD./u., B, andH on the position dences of the instability growth time at the saddle-node
of pointsA andC in physical units and the characteristic time point.
of instability 7 and the transverse periddis shown in Figs. It is of interest to consider the properties of the model
10, 11, and 12, respectively. Saddle-node paiig indepen-  with the constrain=const. Under this condition the anode
dent of Do/ u variations. Butr and A increase sharply at potential dropU is approximately linear in the pressupe
this point and the ranges(, /p,E./p) of the Turing instabil-  (Fig. 13 and this is in agreement with experimental obser-
ity is diminished withDo/u. (Fig. 10. In the case under vations in air[2,26]. The average electric fielH increases
consideration the contraction of transversely bounded syswith pressure at low currenigs in experimenf27]), how-
tems is unlikely to be possible &,/u.>5.3 eV. The high ever, the opposite situation may occur at moderate currents
magnification of the diffusion coefficients is made possible(Fig. 13. This behavior is dependent on the ratio between
by gas flow turbulence. The saddle-node point is shifted to aalues of initial equilibrium and saddle-node point currents.
position with the lower current density and higher electricThe positive column, by itself, normally exhibits a negative
field as B is increasedFig. 11(@)]. At the same time the Eg(p) characteristic. At fixed) and p the anode potential

046405-10
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600 (14) and (13) contain an additional parameter+h_/n,
with n_ being the negative ions densitg0]. If this param-
eter is a function oH, the anode potential drop and the
anode sheath thickneXs may be depended on the discharge
gapH.

500

400

= V. APPLICATION TO A LOCALIZED ANODE CURRENT
E STRUCTURE
= i . . .
= 300 E Curvec in Fig. 2@a) describes thé¢ dependence of the
= dimensionless averaged electron densgyat the middle of
200 = 100 r
100 o 80
5
& 60}
0 =
p (Torr) E 40
FIG. 13. Dependences &f (curvesa andb) andE¢/p (curves S‘
¢ andd) as functions of pressuge Current densityl is 5 mA/cn? 20r
(curvesa andc) and 50 mA/crf (curvesb andd). At p=40 Torr
the physical parameters are as in Fig. 5 and hence confirms to Fig. 0 el ol
5 0.1 1 10 100 1000
I (mA/cm)
drop U and the anode sheath thickness are practically 40 (b)
independent of the discharge g&h This appears to be
physically reasonable, but is inconsistent with observations
in air [26]. In another experiment in a[22] the H depen- 30 F
dence ofU is not as strong as ifi26]. Experimentally the
caseJ=const were examined in detail, unfortunately, in air <
only. In an electronegative plasma refined versions of Egs. = 20 1
100
[v 10 L
€
80 F 0 1oaa 1l L1 1l L3 1l Lol
0.1 1 10 100 1000
& I (mA/cm)
g - 18
LS 60 (c)
8 17
E! =
o~ 40 F E
2 = 16}
~ -
= c
20 F Z 15F a
X ;
Ty
0 1 1 1
-1.5 -1.0 1.0 1.5 13 L1 nl L1l L0l L e
x (cm) 0.1 1 10 100 1000
. . . I (mAjcm)
FIG. 14. Transverse profile of the normalized current density
J/p? for various values of the net current through a st(ipervesa, FIG. 15. Dependences ¢&) J/p? and(b) U at the middle of a
b, ¢, d, ande for Do/u.=1 eV and varioud =1,10, 40, 100, and single localized stationary stripe aiid) E;/p as functions of the
200 mA/cm, respectively; dashed curve g /u.=2 eV andl net currentl through a stripe. Physical parameters are as in Fig. 5
=10 mA/cm; dotted curve foD./u.=1 eV andl=15 mA/cm  (curvea). This curve confirms to curvein Fig. 2@@). Curvesb, c,
from [25]). All other conditions were the same as in Fig. 5. andd calculated at doubl®./u., B, andH, respectively.
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a single localized steady structu¢stripe. The F; depen-  charge current. The subnormal stripes with very low currents
dence of the dimensionless transverse dzefndx/n, of ~ are indep.endent of recombir_lation processes and would re-
this stripe is shown in Fig.(®). The current-density profiles quire an increased electric field and a great anode voltage
across the discharge for the stripes are shown in Fig. 14Irop (Fig. 15. The normal current density decreases with
From this figure we notice that increasing the current throughPe/ #e [see curvesiandb in Fig. 15a)]. It seems likely that
a constricted discharge causes the glowing region to just fithis effect is even more pronounced than in the case of cy-
the anode area in accordance with the normal low cugant lindrically symmetric geometry28]. The stripe parameters
I =40 mA/cm). The existence of a critical value of bifurca- (J/p®,U) are defined by rather a summary diffusion loss
tion parametefF, such that the transverse siae~ asF,  (—~HD,) [see curved andd in Figs. 1%a) and 18b)]. How-
—F, [see Fig. B)] is typical for bistable activator-inhibitor €ver theD¢/u.- andH dependences of the average electric
systemg24]. In the case under consideration it seems likelyfield Es are essentially different.
that this critical point E,,n(F,)) is lying on curvec [see
Fig. 2(@)] and thence the norr_nal current density and normal V1. CONCLUSION
anode voltage drop are a point of the homogeneous equilib-
rium state of the model. Earlier the normal current effect in ~ We presented a one-dimensional physically self-consistent
the near-anode region has been investigated in the frame afodel of high-pressure dc discharges that takes into account
the basic mode(1) and(2) in cylindrically symmetric geom- the main physical processes in near-anode plasma and posi-
etry [28]. The shape of the subnormal spot is governed bytive column. The model involves a pair of coupled reaction-
located ionization processes and diffusion charge particlesliffusion equations of an activator-inhibitor-type. Numerical
while the normal anode spot is formed under the influence o§imulations show that this model displays spontaneous gen-
the ionization and recombination processes and the trangration of complex current structures or a single spot at the
verse transport of charge particles in complicated electri@anode and reflects most of the properties of basic multidi-
field. WhenD./u. increasegdashed curve in Fig. 24the  mensional drift-diffusion modgll) and(2). In contrast to the
current profile becomes more spread. A comparison of theariables of basic equationd) and (2), the variables of
calculated results witth4] revealed that the current-density model (23) and (25) admit homogeneous solutions in the
profile of the basic model is smoother and wider than thastrongly longitudinal-inhomogeneous near-anode layer. This
from model(23) and (24) (see Fig. 14 makes possible the using of standard stability and bifurcation
Figure 15 shows the dependencesJfp? and U at the  analysis. The discharge gap, volume electron-ion recombina-
middle of stripe andEg/p as functions of the net curreht  tion, and especially electron diffusion have a profound effect
through the stripe. Curva corresponds the data f@./u.  on the collective interaction of current structures. The pre-
=1 eV in Fig. 14. Figure 1&) shows that in the intermedi- dictions of the model match the available experimental re-
ate range of currerisay, 3<1<20 mA/cm the current den- sults to a satisfactory extent, particularly with respect to the
sity increases logarithmically with an increase in the dis-anode pattern formation.
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